Math 115
Winter 2017
Lecture 4

Solve:
1)

$$
\begin{aligned}
& 4(2 x-3)-8=2(5 x-10)-2 x \\
& 8 x-12-8=10 x-20-2 x \\
& 8 x-20=8 x-20 \\
& 8 x-8 x=-20+20 \quad \begin{array}{l}
0=0 \\
\text { True } \\
\text { infinite }
\end{array}
\end{aligned}
$$

2) $\frac{3}{4}(x-2)+3=\frac{1}{2}(x+2)-1$ infinitely many Solutions.
Equation is an identity.

$$
\begin{aligned}
& \begin{array}{l}
\frac{3}{4}(x-2)+3=\frac{1}{2}(x+2)-1 \\
L C D=4 \\
x \cdot \frac{3}{x}(x-2)+4 \cdot 3 \\
=\frac{2}{x} \cdot \frac{1}{x}(x+2)-4 \cdot 1 \\
3(x-2)+12=2(x+2)-4 \\
3 x-6+12=2 x+4-4 \\
3 x+6
\end{array} \quad \begin{array}{l}
\{x=-6 \\
\text { Equation }
\end{array} \quad \text { is conditional }
\end{aligned}
$$

Solve

$$
\begin{aligned}
&-3(4 x-2)+5=6(-2 x+1)-1 \\
&-12 x+6+5=-12 x+6-1 \\
&-12 x+11=-12 x+5 \\
&-12 x+12 x=5-11 \\
& 0 \text { False } \\
& \text { No Solution } \\
& \text { Equation is }
\end{aligned} \quad \begin{aligned}
& \text { Contradiction. }
\end{aligned}
$$

When there	LinearEquation Equation is inexactly one Soln.
Conditional	
are infinitely many solus.	Identity
is no Soln	Contradiction

2 more than 3 times the number of dimes is equal to the \# of nickels. How many each if You have $\$ 1.35$ worth of coins in dimes غ่ nickels.

$$
\text { Dimes } \rightarrow x
$$

$$
\begin{gathered}
10 \text { Dimes + } 5 \text { Nickes }=135 \\
10 x+5(3 x+2)=135 \\
10 x+15 x+10=135 \\
25 x=125
\end{gathered}
$$

$$
\begin{gathered}
x=\frac{125}{25} \\
x=5
\end{gathered}
$$

Lisa has \$235 in \$20'sè \$5's. the \# of \$5's bills is 1 fewer than twice $\#$ of $\$ 20^{\prime}$ s bills.
How many of each?

Sara works as a Server at a local coffee shop. She collected $\$ 50$ for Serving two types of coffee. Small size @ \$1.25, Large Size @ ${ }^{\$ 1.45 \text {. }}$ \# of large size coffee she served was 3 move than twice the $\#$ of Small Size. How many of each? Large $\rightarrow 2 x+3$

$$
\text { Small } \rightarrow x
$$

$\$ 1.25$ Small $+\$ 1.45$ Large $=\$ 50$

$$
\begin{aligned}
& 1.25 x+1.45(2 x+3)=50 \\
& 1.25 x+2.9 x+4.35=50 \\
& 4.15 x=50-4.35 \underbrace{11 \text { small }} \begin{array}{l}
x=11 \\
4.15 x=45.65 \\
x=\frac{45.65}{4.15}
\end{array} \underbrace{25 \text { i. }} \begin{array}{l}
\text { large }
\end{array}
\end{aligned}
$$

How to express Solus for inequalities:

1) Set-builder notation

$$
\{x \mid\}
$$

2) Graphing
3) Interval notation $\operatorname{use}($,$) .$

Solve $-2 x+5 \leq 11$

$$
\begin{array}{r}
-2 x \leq 11-5 \\
-2 x \leq 6 \\
x \geq \frac{6}{-2} \\
x \geq-3
\end{array}
$$

$\infty,-\infty$ always $\operatorname{set}($,$) .$

Interval notation $[-3, \infty)$

Solve

$$
\begin{array}{ll}
-3 x-5>7 & \text { S.B.N. } \\
-3 x>7+5 & \{x \mid x<-4\} \\
-3 x\rangle 12 & \{
\end{array}
$$

$$
\frac{-3}{2} \times<\frac{12}{-7} \quad \text { Such that }
$$

Solve

$$
\left.\begin{array}{l}
1<2 x-3 \leq 9 \\
1+3<2 x-7) * 3 \leq 9+3 \\
4<2 x \leq 12 \\
\frac{4}{2}<\frac{2}{2} x \leq \frac{12}{2} \\
2<x \leq 6
\end{array}\right] \begin{aligned}
& \{x \mid 2<x \leq 6\} \\
& \\
& \\
& \begin{array}{c}
2 \\
\text { Interval } \\
\text { notation } \\
(2,6]
\end{array} \\
&
\end{aligned}
$$

$$
-2 \leq-3 x+4<7
$$

Subtract $4 \rightarrow-6 \leq-3 x<3$
Divide by $-3 \rightarrow 2 \geq x>-1$
It is better to have
Smaller $\#$ of the left $\rightarrow-1<x \leq 2$
hand side S.B.N. $\{x \mid-1<x \leq 2\}$
Graphing

$$
\text { IN. }(-1,2]
$$

| Solve: |
| :--- | :--- |
| $2<2-3 x \leq 11$ |
| $2\langle-3 x+2 \leq 11$ |\quad| $0<-3 x \leq 9$ |
| :--- |
| $\frac{0}{-3}>\frac{-3}{-3} x \geq \frac{9}{-3}$ |$\quad 0>x \geq-3$

Geometric perimeters:

1) Triangle

2) Rectangle

3) Square
 S

$$
P=4 S
$$

A triangular room has w perimeter of 31 meters. One side is twice another side. The third side is 3 meters longer than the shortest side of first two sides. Find all three sides. Side $1 \rightarrow x$

$$
\begin{aligned}
& \text { Side } 2 \rightarrow 2 x \\
& \text { Side } 3 \rightarrow x+3
\end{aligned}
$$

A rectangular pool has a perimeter of 76 ft .
The length is 6 ft longer than 3 times its width.
find its dimensions.

$$
\leftrightarrow 8 \mathrm{ft} \text { by }
$$

$$
P=76
$$

$$
\begin{aligned}
& 2 L+2 w=76 \\
& 2(3 x+6)+2(x)=76
\end{aligned} \rightarrow 6 x+12+2 x=76
$$

$$
\begin{aligned}
& \underbrace{\text { Side }}_{1} 1+\underbrace{\text { Side } 2}_{2}+\underbrace{\text { Side } 3}_{2}=31 \\
& x+2 x+x+3=31 \\
& 4 x+3=31 \\
& 4 x=28 \\
& x=7 \\
& \left\{\begin{array}{l}
\text { Side } 1 \rightarrow 7 \mathrm{~m} \\
\text { Side } 2 \rightarrow 14 \mathrm{~m} \\
\text { Side } 3 \rightarrow 10 \mathrm{~m}
\end{array}\right.
\end{aligned}
$$

A rectangular carpet has a perimeter of 64 m .
Its length is 4 m Shorter than twice its width.

$$
A=L \cdot W
$$ find its area.

$$
\begin{aligned}
& =240 \mathrm{~m}^{2} \text { w } \\
& L=2 x-4
\end{aligned}
$$

$$
\begin{gathered}
P=64 \\
2 L+2 w=64 \\
2(2 x-4)+2 x=64
\end{gathered} \quad \rightarrow 4 x-8+2 x=64 \begin{aligned}
& L=2 x-4 \\
& 6 x=72 \\
& x=12
\end{aligned} \begin{aligned}
& w=12 \mathrm{~m} \\
& L=20 \mathrm{~m}
\end{aligned}
$$

find all possible values for x Such that the perimeter of the rectangle below is between 4 m and 21 m , inclusive.

$$
\begin{aligned}
& \left.4 \leq \frac{p \leq 21}{x}\right) \underbrace{x-4}_{L} \underbrace{\frac{1}{2} x}_{w} \\
& 4 \leq 2 L+2 w \leq 21 \\
& 4 \leq 2(x-4)+2\left(\frac{1}{2} x\right) \leq 21
\end{aligned}
$$

$$
\begin{aligned}
& 4 \leq 2(x-4)+2\left(\frac{1}{2} x\right) \leq 21 \\
& 4 \leq 2 x-8+x \leq 21 \\
& 4 \leq 3 x-8 \leq 21 \quad \rightarrow \text { S.B.N. } \quad\left\{x \left\lvert\, 4 \leq x \leq \frac{29}{3}\right.\right\} \\
& 12 \leq 3 x \leq 29 \\
& 4 \leq x \leq \frac{29}{3} \\
& \text { Graphing }
\end{aligned}
$$

You need at least 90 to get an A. Exam $1 \rightarrow 84 \quad$ Average ≥ 90 Exam $2 \rightarrow 80$
Final exam counts as 2 exams. what Score on final exam you need to get an A?

$$
\begin{aligned}
& \frac{84+80+2 F}{4 \sigma} \geq 90 \\
& 84+80+2 F \geq 360
\end{aligned}
$$

$$
\begin{aligned}
& 164+2 F \geq 360 \\
& 2 F \geq 360-164 \\
& 2 F \geq 196 \\
& F \geq \frac{196}{2}
\end{aligned} \begin{aligned}
& \text { at least } 98 \\
& \begin{array}{l}
\text { on the final } \\
\text { exam to get }
\end{array} \\
& A \text { for class. }
\end{aligned}
$$

A handy Man charged $\$ 20$ to show up and ${ }^{\$ / 15 / h r}$ to do the work. Total cost did not exceed \$125. How long did he work?

$$
\begin{aligned}
20+15 H & \leq 125 \\
15 H & \leq 105 \\
H & \leq 7
\end{aligned}
$$

$\$ 4.25$ for 8 notebooks
How much for 12 notebooks?

$$
\begin{aligned}
& \frac{\$ 4.25}{8 \text { Notebooks }}=\frac{\$ x}{12 \text { Notebooks }} \begin{array}{l}
\frac{4.25}{8}=\frac{x}{12} \\
8 x=12(4.25)
\end{array} \quad \begin{array}{l}
x=\frac{51}{8} \\
x=6.375
\end{array} \$ 6.38
\end{aligned}
$$

There were 53 questions on ω test. Some were multiple-choice and the rest was show-work. the \# of multiple -choice questions was 1 more than 3 times the \# of Show-work questions. How many Show-Work questions?

$$
\begin{aligned}
& \text { Multiple-choice }+\underbrace{\text { Show-work }}=53 \\
& \underline{\underline{3 x}}+1+\underline{x}=53 \\
& 4 x+1=53 \\
& 4 x=52 \\
& x=13 \\
& \text { S } 13 \text { Show-work } \\
& \text { questions }
\end{aligned}
$$

PTA Sold 82 tickets for School play. Adults $\dot{\varepsilon}$, kids only. The $\#$ of kid's tit was 3 fewer than 4 times the \# of Adult's tit. How many kids tit did they Sell?

$$
\begin{aligned}
& \underbrace{\text { Adults }}_{x}+\underbrace{\text { kids }}_{4 x-3}=82 \\
&=82
\end{aligned}
$$

$$
\begin{array}{rlr}
5 x-3=82 \\
5 x=85 & \text { kid's }+k t=4 x-3 \\
x=\frac{85}{5} & =4(17)-3 \\
x=17 & & =68-3 \\
& & =\begin{array}{rr}
65 & \text { kid's } \\
+k t
\end{array}
\end{array}
$$

Ch. 3: Intro to graphing

Plot $A(0,3)$, and $B(7,0)$
Plot $C(-4,-5)$

$\overline{A B} \rightarrow$ line segment connecting Points $A \in B$.
$\overrightarrow{A B} \rightarrow$ line that contains both points A \&. B.

$$
A(-6,4), B(3,0), C(7,-5)
$$

Draw $\overline{A B}$,

Equation of a line

$$
\left.\begin{array}{l}
A x+B y=C \\
y=m x+b \\
y-y_{1}=m\left(x-x_{1}\right)
\end{array}\right\} \text { slant lines }
$$

$$
x=a \text { Vertical, } y=b \text { horizons }
$$

Graph

$$
\begin{array}{ll}
x+2 y=4 \\
x & y \\
0 & 2 \\
\hline 4 & 0
\end{array} \quad \begin{aligned}
& =2 y=4 \\
& x+2(0)=y
\end{aligned} \quad x=4
$$

Graph

Graph

$$
\begin{aligned}
& 4 x-5 y=-20 \\
& x \\
& y \\
& \hline 0
\end{aligned} 4
$$

$$
y=\frac{2}{3} x-1
$$

$$
\begin{aligned}
& y=\frac{2}{3}(0)-1=0-1=-1 \\
& y=\frac{2}{3}(3)-1=2-1=1
\end{aligned}
$$

Geraph

$$
y=\frac{-3}{4} x+5
$$

$$
\begin{aligned}
y & =\frac{-3}{4}(0)+5 \\
& =0+5=5 \\
y & =\frac{-3}{4}(x)+5=-3+5=2
\end{aligned}
$$

x	y
0	5
4	2

$$
\begin{aligned}
& x \text {-only vertical } \\
& y \text {-only horizontal }
\end{aligned}
$$

$$
x=2 \quad \dot{\varepsilon}_{1} y=-4 \quad \sum_{2}^{y} \quad \rightarrow x \left\lvert\, \begin{array}{ll}
x=2 \\
2 & y=-4 \\
\hline
\end{array}\right.
$$

Graph

$$
\begin{aligned}
& x=-3 \text {, and } y=5 \\
& \text { VoL. }
\end{aligned}
$$

Graph $x=4, y=-2$, and $x-2 y=-6$. Shade the region that is bounded by all three lines. | x | y |
| :---: | :---: |
| 0 | 3 |
| -6 | 0 |

$$
\left.\begin{array}{ll}
\text { Graph } & x
\end{array} \right\rvert\, y .
$$

Due Tuesday

$$
\text { SG } 3, W P 4, W P 5
$$

Exam 1:
Thursday ch. 1,2, and Part of 3 . from 6:00 AM T_{0} 7:30 AM.

Consecutive Integers:

$$
\begin{aligned}
& 1,2,3,4, \cdots \\
& 23,24,25,26, \ldots \\
& -15,-14,-13, \cdots \\
& 98,99,100, \cdots
\end{aligned}
$$

$$
x, x+1, x+2, x+3, \cdots
$$

find two consecutive integers
Such that their sum is 51 .

$$
\begin{cases}x \xi_{1} x+1 & x+x+1=51 \\
25 \dot{\varepsilon} 26 & \begin{array}{l}
2 x+1=51 \\
2 x=50
\end{array} \quad \overline{x=25}\end{cases}
$$

The measure of 3 angles in triangle $A B C$ are 3 Cons. integers. Find all three.

find two consecutive integers
Such that twice the smaller one is equal T_{0} the difference of 168 and three times the larger one. Smaller $\rightarrow X$

$$
\text { Larger } \rightarrow x+1
$$

$$
\begin{aligned}
& 2 x=168-3(x+1) \\
& 2 x=168-3 x-3 \\
& 2 x=165-3 x
\end{aligned}
$$

$$
\begin{aligned}
& 2 x+3 x=165 \\
& 5 x=165 \\
& x=33
\end{aligned}
$$

The sum of pase numbers of two facing lases is 203. find the langer pase number.

length and width of a rectangular garden with perimeter 230 ft are two cons. integers. find its length.

$$
\begin{gathered}
P=230 \\
2 L+2 w=230 \\
2(x+1)+2 x=230 \\
2 x+2+2 x=230
\end{gathered}
$$

